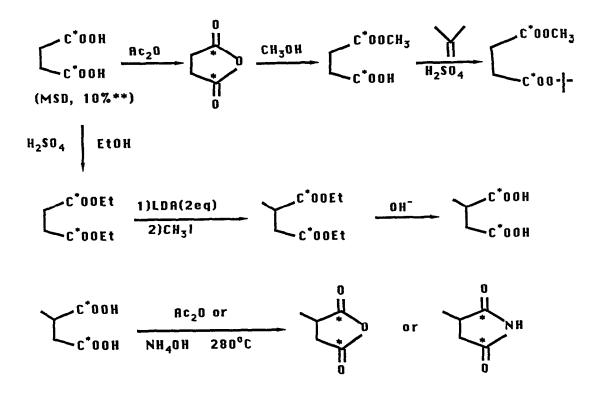

CONFORMATION OF SUCCINIC ACID DERIVATIVES BY DOUBLE ¹³C-LABELLING

F. M. Menger* and L. H. Lee

Department of Chemistry, Emory University, Atlanta, Georgia 30322

<u>Summary</u>: Three-bonded carbon/carbon couplings $({}^{3}J_{cc})$ are used, in conjunction with MM2 calculations, to examine conformational equilibria in several di- ${}^{13}C$ -labelled succinic acid derivatives.

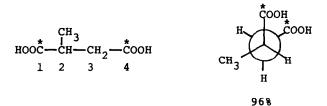
Three-bonded carbon/carbon couplings $({}^{3}J_{cc})$ respond to dihedral relationships in a typical Karplus fashion (<u>i.e.</u> maxima near 0° and 180° and a minimum near 90°).^{1,2} For example, in <u>C-C-C-C=0</u> systems, ${}^{3}J(0^{\circ}) = 2$ Hz, ${}^{3}J(60^{\circ}) = 0.5$ Hz, ${}^{3}J(90^{\circ}) = 0$ Hz, and ${}^{3}J(180^{\circ}) = 4-5$ Hz, as illustrated by the two 13 C-carboxyl-labelled compounds below.³ We have recently examined conformations among acyclic compounds possessing <u>two</u> 13 C atoms spaced four atoms apart (${}^{*}_{C-C-C-C}$).⁴ Although synthesis of compounds with two 13 C labels is often tedious, the effort



is worthwhile because interpreting the NMR spectra then becomes trivial. Instead of deciphering a composite of couplings (<u>e.g.</u> ${}^{2}J_{8,1}$, ${}^{1}J_{8,2}$, ${}^{2}J_{8,3}$, ${}^{3}J_{8,6}$ etc. for the norbornyl derivative above), one simply measures the separation between members of the two doublets looming above the "natural abundance" peaks.

In the course of synthesizing chains containing two 13 C atoms, we obtained a variety of di- 13 C-labelled succinic acid derivatives (<u>Scheme</u>) that readily lent themselves to NMR

examination. Moreover, since succinic acid serves as substrate⁵ and inhibitor⁶ for certain enzymes, ³J_{cc} data on succinic acid derivatives could provide the basis for stereochemical studies at active sites. We therefore report here on conformational equilibria on these materials; supportive MM2 calculations are also included.

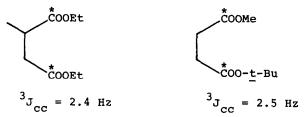

Scheme

All NMR spectra were obtained at 23 \pm 0.5°C using an IBM-WP-200-SY spectrometer. A typical run had 50 mg 10% di-labelled compound in 3 ml deuterated solvent (5000 scans, SW = 5000, FW = 6). No dependence of ${}^{3}J_{.cc}$ was observed on concentration or spectral mode (traced normally or with the aid of a 32-phase INADEQUATE sequence). Uncertainty in the coupling constants is \pm 0.1 Hz.

Monomethyl succinate, $HOOC(CH_2)_2COOCH_3$, displayed ${}^{3}J_{cc}$ values of 2.3, 2.4, 2.5, 2.6, and 2.7 Hz in acidic D_2O , DMSO, benzene, acetone, and chloroform, respectively. Only dioxane $({}^{3}J_{cc}$ = 3.0 Hz) fell out of the 2.5 ± 0.2 Hz range, showing that conformation is rather insensitive to solvent polarity. Apparently, specific solvent-solute complexation (e.g. H-bonding of donor solvents to the carboxyl proton) is too far removed to contribute substantially to intramolecular interactions.

In order to determine experimentally the <u>trans/gauche</u> ratios from coupling data, one needs to know ${}^{3}J_{cc}$ values for "pure" <u>trans</u> and <u>gauche</u>. The ${}^{3}J_{cc}$ for "pure" <u>gauche</u> was obtained from the fact that, according to MM2 calculations, methyl succinic acid is 96% <u>gauche</u>.

This percentage was deduced in the following manner: The dihedral angle was rotated about the 2-3 bond from -180° to + 180° to locate energy minima that appeared at 60° and 179°. The dihedral angle was then fixed at 60°, and the 1-2 and 3-4 bonds were rotated in a "3-dimensional" dihedral driver analysis to find the energy of the global minimum. A similar procedure was applied to a central dihedral angle of 179°. In this way, <u>gauche</u> was found to be more stable than <u>trans</u> by 1.92 kcal/mol, signifying a 96-to-4 preponderance of <u>gauche</u>. Since the observed ${}^{3}J_{cc}$ for methyl succinic acid is 2.1 Hz, "pure" <u>gauche</u> is associated with a ${}^{3}J_{cc} = 2.0$ Hz.⁷ ${}^{3}J_{cc}$ for "pure" <u>trans</u> was estimated as 3.6 Hz. This was obtained from the ${}^{3}J_{cc} = 4.2$ Hz


for methyl succinic acid at high pH where, it was assumed, the carboxylates are totally <u>trans</u>. Since it was found that ${}^{3}J_{cc}$ for monomethyl succinate increases from 2.3 to 2.6 Hz as it passes from acid to base, we subtracted 2 x 0.3 Hz = 0.6 Hz from the observed value of 4.2 Hz as a rough correction for inductive effect differences between carboxyl and carboxylate.

MM2 calculations on monomethyl succinate, performed as described for methyl succinic acid, showed that the monoester is 64% gauche and 36% trans.⁸ It can thus be estimated from Eq. 1 that ${}^{3}J_{cc}$ equals 2.6 Hz (compared to 2.5 ± 0.2 Hz that was, as cited above, found in most solvents). Conversely, one can calculate trans/gauche ratios using observed ${}^{3}J_{cc}$ values. For

$${}^{3}J_{cc} = 0.64 \times 2.0 + 0.36 \times 3.6 = 2.6 \text{ Hz}$$
 (1)

example, the two diesters below have ${}^{3}J_{cc}$'s in acetone of 2.4 Hz and 2.5 Hz, corresponding to 75% and 69% gauche, respectively (values that are within experimental error of one another).

Two interesting facts are revealed by the diesters: (a) The <u>t</u>-butyl group plays a minor role in

determining conformation (no doubt stemming from the same reason advanced for a lack solvent effects). (b) The slight preference for <u>gauche</u> carbonyls persists even when intramolecular hydrogen bonding, possible in methyl succinic acid⁹, is definitely not a factor.

Zetta and Gatti¹⁰ studied succinic and methyl succinic acids <u>via</u> analysis of AA'BB'X and $ABCD_3$ ¹H NMR spectra. They concluded that substantial amounts of <u>trans</u> and <u>gauche</u> conformers are present. Our method is far less complicated and provides a more quantitative assessment of rotamer populations. A wealth of useful conformational information lies in wait for anyone willing to synthesize di-¹³C-labelled materials.¹¹

Acknowledgment. Work was supported by the National Institutes of Health.

References

- Marshall, J. L. "Carbon-Carbon and Carbon-Proton NMR Couplings: Applications to Organic Stereochemistry and Conformational Analysis;" Verlag Chemie Int.: Deerfield, FL, 1983.
- 2. Berger, S. Org. Mag. Res. 1980, 14, 65.
- 3. Marshall, J. L.; Miiller, D. E. J. Am. Chem. Soc. 1973, 95, 8305.
- 4. Menger, F. M.; Carnahan, D. W. J. Am. Chem. Soc. 1986, 108, 1297.
- 5. Tchen, T. T.; van Milligan, H. J. Am. Chem. Soc. 1960, 82, 4115.
- 6. Brant, D. A.; Barnett, L. B.; Alberty, R. A. J. Am. Chem. Soc. 1963, 85, 2204.
- 7. Calculated from 2.1 = 0.96J $_{\rm g}$ + 0.04J t where J $_{\rm t}$ = 3.6 Hz as given in the next paragraph.
- 8. These percentages incorporate the fact that monomethyl succinate has two enantiomeric <u>gauche</u> conformers.
- 9. Bardet, L.; Maillols, J.; Maillols, H. <u>C. R. Acad. Sci. Paris 1970, 270, 158</u>. This Raman study of succinic acid in water indicates the presence of an intramolecular hydrogen bond.
- 10. Zetta, L.; Gatti, G. Tetrahedron 1972, 28, 3773.
- 11. ${}^{3}J_{cc}$ = 8.9 Hz (CDC1₃) for the cyclic anhydride in the <u>Scheme</u>. The cyclic imide has coupling constants of 12.1 Hz in DMSO-d₆ and 13.0 Hz in acidic D₂O.

(Received in USA 9 October 1987)